Representación de Gráficas

Matemáticas Aplicadas a las CC.SS.

Representación de Gráficas - Curvas polinómicas

Vamos a analizar los aspectos relacionados con la representación de gráficas de funciones definidas a través de polinomios.

Vamos a estudiar primero cómo conseguir representar una gráfica como la de arriba. Y de las cuestiones propuestas a continuación, elijamos razonadamente la respuesta correcta de entre las opciones ofrecidas. En caso de duda, al situar el puntero sobre el interrogante obtendremos una pequeña ayuda.

El gráfico

El gráfico anterior, construido con Geogebra, muestra la gráfica de una función definida por

f(x)=1/5 x³ + 6/5 x² + 5

Además, se muestran en ella los siguientes puntos remarcados:

  1. Extremos (E)
  2. Puntos de inflexión (I)
  3. Ceros o raíces (R)

Guía

Estos son los pasos que se han dado para obternerlo:

  1. En el campo de entrada se ha introducido:
    f(x) = x^3 / 5 - 6 x^2 / 5 + 5
    E = Extremos[f]
    I = PuntoInflexión[f]
    R = Raíz[f]
  2. La labor que queda es ya de adorno: pinchando en la gráfica, con el botón derecho accedemos al menú contextual Propiedades. Ahí tenemos una ventana desde la que podemos acceder las propiedades de todos los objetos.
    En la ficha Color se ha elegido: rojo para la curva, verde para los extremos, azul para las raíces y púrpura para la inflexión
    En la ficha Básico » Expone rótulo se ha elegido la opción Nombre & valor para todos
  3. Ahora, con el botón derecho sobre el fondo de la zona gráfica accedemos a Propiedades » Color de fondo y se ha elegido un azulado suave.
  4. Por último, con la rueda del ratón (o del touchpad) se ha elegido un zoom adecuado y se ha movido toda la zona gráfica pinchando en su fondo y arrastrando el puntero con la tecla Control pulsada.

Cuestiones

Vamos a responder a las siguientes cuestiones planteadas sobre la función polinómica cuya gráfica es la que tenemos arriba dibujada:

f(x)=1/5 x³ + 6/5 x² + 5
  1. El dominio de la función es...    pregunta
  2. La función es continua...    pregunta
  3. ¿Cuántas asíntotas verticales tiene la curva?    pregunta
  4. ¿Cuántas asíntotas horizontales tiene la curva?    pregunta
  5. Los límites de la función para x → +∞ y x → −∞ son, respectivamente,...    pregunta
  6. El nűmero de ceros que tiene el polinomio es...    pregunta
  7. El máximo relativo de la función es el punto...    pregunta
  8. El mínimo relativo de la función es el punto...    pregunta
  9. El punto de inflexión de la función es el punto...    pregunta
  10. La función es decreciente en...    pregunta

Limpieza.

¿Desea volver a responder a las cuestiones anteriores? Pulse en el siguiente botón y se borrarán todas las respuestas que hubiera: